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By Euclid C. Holleman and Wendell H. S t i l l w e l l  

Reaction controls that c m d  velocity and a t t i tude  have been 
investigated and are compared t o  controls that camand  acceleration. 
Proportional  acceleration  reaction  controls were found t o  be satis- 
factory over a much wider range of control  effectiveness than were the 
on-off acceleration  controls. The velocity and attitude controls were 
superior t o  either of the  acceleration  controls. The proportional 
acceleration,  velocity, and attitude cnmmFlnd systems were found t o  be 
comparable in  fuel required and were insensitive t o  practical  rocket 
system lags. Dynamfc pressure through dihedral effect comglicated the 
control problem, but  the  velocity and a t t i tude  systems minimized these 
effects.  Successful  entry could be accomglished with ei ther  of the 
control systems, but with the acceleration  camand system th= task 
required mch more attention from the p i lo t .  

I 

Exploitation of the   ba l l i s t ic   capabi l i t i es  of present o r  contem- 
plated manned vehicles  requires  the use of some form of reaction  control. 
Attitude  control will then be possfble beyond aerodynamic flight IFmits. 
Figure 1 shows altitude plotted  againet Mach m e r  with the shaded &rea 
representing aynaanic pressure of from 5 t o  10 pounds per square  foot. 
It is  believed that, generally, above this region  reaction  controls will 
be  required. 

Initial investigations of reaction  control usage were made by using 
an analog sfnulator. These studies  investigated on-off acceleration 
reaction  controls w h i c h  gave adequate  control,  but which required con- 
stant  at tention t o  the  control task. Such a reaction  control system 
w a s  designed for   the X-1B airplane and has been  ground-tested  by using 
a three-degree-of-freedom slrmrlator. Plight tests of these reaction 
controls have been ini t ia ted.  

.L 
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This paper  evaluates  the  effectiveness of  reaction  controls that 
cormnand velocity and at t i tude and compares these  system  to  the  accel- 
eration cornand system. Although much of the data were obtained fo r  
ideal systems at zero dynamic pressure, some resul ts  are also available 
t o  assess the effects of l o w  dynamic pressure as well as assumed rocket 
system lags. 

a t t i tude feedback gain 

velocity feedback gain 

dynmic  pressure, lb/sq f t  

angle of sideslip, deg 

pitch  control,  percent 

r o l l  control,  percent 

yaw control,  percent 

pitching  angle, deg 

pitching  velocity, deg/sec 

angle of bank, deg 

METHOD 

This study was performed u t i l i z ing  a closed-loop sbu la t ion  con- 
s is t ing of an analog computer, oscilloscope  for  presentation,  control 
st ick,  and p i lo t .  The analog computer was used t o  solve  the differ- 
en t i a l  equations that represented the airplane and control system. 
Three degrees of freedm were assumed for the  zero dynaxnic pressure 
case, and f ive degrees of freedom for   the f ini te  aynamic pressure  case. 
Representative  research  airplane mass and baslc aeroaynamic character- 
i s t i c s   ( t ab le  I) for  aMach nmiber of 4.5 were used for   the assumed 
problem. A three-axes  control stick ( f ig .  2),  which i s  similar t o  the 
controller  being used i n  the X-lB airplane, was used for  control. This 
stick required up-and-down motion f o r  pitch  control,  side-to-side motion 
f o r  yaw control, and rotation for roll control. ., 
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Also sham in the  figure  is  the  presentation to the  pilot. A 
trace on an oscilloscope moved up and down to  represent  pitch,  rolled 
to  signify  roll,  and a meter  indicated yaw. 

Since  it was desired  to  use  these  control  systems  for  orientation 
as  well as stabilization in the  reaction  control  region,  several  eval- 
uation  tasks  were  employed.  The  response and precision of control  were 
evaluated by making pitch, yaw, and roll  changes in attitude  and by 
coordinating  these  changes. This task  is  referred to as the orfentation 
task.  Another  control  task  consisted of attempting  to  retain  initial 
attitude  after  the  imgosltion of a sudden constant  acceleration of 
2 degrees  per  second2 in pitch  and yaw and i s  termed  the  stabilization 
task. 

, 
RESULTS AND DISCUSSION 

Previous  studies  of  acceleration on-off reaction  controls  indicated 
desirable  levels of control  effectiveness and proportioning. A summary 
of these  results I s  presented in figure 3, which shows satisfactory con- 
trol  regions that m e  functions  of r o l l  control  effectiveness  and  control 
effectiveness ratio. (Control  effectiveness  is  defined as the ang~lar 
acceleration  produced  by full control.  Control  effectiveness  ratio is 
the  ratio  of roll control  effectiveness  to yaw or pftch  control 
effectiveness.) 

For a stabilizfng  task  the on-off acceleration  controls wkre satis- 
factory  wlthin the triangular  region shown. Higher  control  effective- 
ness  resulted  in  overcontrol  tendencies. Also shown is  the value pres- 
ently being flight tested with the X-lB amlane. The  llmits of the 
present  study  are shown by  the bars. Although  this  study was not as I 

comprehensive in detemnhing  the  limits of satisfactory  control as the 
previous  on-off  study was, the three  systems - proportional acceleration 
commnnd,  velocity  command,  and  attitude  command - gave satisfactory  con- 
trol  over  the  raage  shown, which is a much larger  range of control 
effectiveness  than was obtained  with  the  on-off  controls.  Samewhat 
arbitrary  values  of  control  effectiveness  of 20 degrees  per  second2 for 
roll and a control  ratio of 4 were  used  for all the  results  presented. 
The  results  that follow compare  the  proportional  acceleration,  velocity, 
and  attitude  systems. 

For an auxiliary  control system such as the  reaction  control, 
econonfcd  operation is of great  importance. Fuel requirements  are  one 
indication of the  effectiveness of the  closed-loop  control.  Figure 4 
shows a s-le block diagram w h i c h  describes  the  systems  under  consid- 
eration. Also shown is the  effect of system  feedback gain for  the 

I 
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velocity c0-d and the  att i tude command system on the  relative  fuel 
required f o r  the  stabil ization task. The fue l  requirements have been 
normalized to  the  acceleration command system which is represented by 
zero  velocity  gain. For the  velocity commagd system the  re la t ive  fuel  
required  decreases with increasLng  feedback gain. A gain of 1.5 gave 
good response as well es reasona;bly good  econoIlrJ and m s  used f o r  most 
of the tests. In the range of a t t i tude feedback gain frm 0.1 t o  0.5 
the  relative  fuel  required was rather  insensitive  to  attitude feedback 
gain. A value of 0.25, i n  condunction wlth a velocity  gain of 1.5, 
gave desirable response characteristics  for the at t i tude c o m d  system 
and was used  subsequently. 

In figure 5 the  fuel  required  to change pitch  att i tude 30° and 
s tabi l ize  in different t h e  intervals i s  compared for  the  three systems. 
Yaw a d  r o l l  results are  not  presented,  but  these results would be can- 
parable. As might be expected, the slower maneuvers require  less fhel 
than  the  faster maneuvers. It i s  apparent that the velocity and att i-  
tude command systems are about as economical. as  the  acceleration cmmand 
system. These curves are near minFmum fhel  required fo r  these maneuvers 
and are much  more easily  realized  with  the  velocity o r  at t i tude system 
than with the acceleration command system, as is i l lus t ra ted  i n  figure 6. 
It should  be  noted that the  pilot  control manipulation for  the  velocity 
and at t i tude systems i s  much less  than f o r  the  acceleration system for  
satisfactory completion of the  task. Initial attempts t o  change atti- 
tude with the  acceleration system usually  resulted  in  overcontrol and 
invariably  resulted in more control manipulation. 

The results  discussed have concerned ideal systems w i t h  ideal 
rocket  characteristics. In figure 7 is shown the effect of practical  
rocket  thrust response on the  relative  Rrel  required for the  stabil i-  
zation  task.  Practical  rocket response i s  characterized by a delay and 
buildup time. Thrust  buildup  tlmes t o  0.4 second were investigated and 
had no measurable effect  on the performance of the systems. Delays up 
t o  0.4 second,  which should cover the range of practical  delays, had 
l i t t l e   e f f e c t  on the  re la t ive  fuel   for  any of the three systems. For 
the  large  delay of 0.8 second the  velocity and at t i tude system6 showed 
only a small increase in relative  fuel,  but  the  acceleration system 
showed a large increase. These trends were even more evident  during 
orientation t-ks. 

To gain some insight into the effect of dynamic pressure on the 
control task wlth  reaction  controls,  s-ilization  tasks were performed 
at constant m c  pressure. The resul ts  of these  tes ts  are shown in 
figure 8. It can be seen that with the  velocity and at t i tude systems 
there was l i t t l e   e f f e c t  of dynamic pressure. With the  acceleration 
system, dynamic pressure can have a marked effect ,  depending on p i lo t  
technique and ef for t  expended.  With very close  attention t o  the  task, 
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the efficiency  of this system can approach  t-hat of the  velocity or atti- 
tude  commA.na systems; however, lriany maneuvers, though not out of control, 
resulted in the  fuel  required  that  is  indicated  by  the  upper  bounds of 
the  crosshatched area. The  aynamic  pressure  region of 5 to 10 pounds per 
squsse  foot  appears  to  be a very  demanding  region  for  precise  control 
with  the  acceleration  systembecause of dihedral  effect. 

Figure 9 extends  these results by simulating the initial  buildup 
in  dynamic  pressure  during a typical  entry wtthout damper  augmentation. 
Constant Mach rider w&s assumed  for this maneuver.  Shown  are his- 
tories  of  dynamic  pressure,  sideslip, yaw control,  bank  angle, and roll 
control  for  the  acceleration  (solid l i ne}  and velocity  (dashed  =ne> 
command  systems. It was the task of the  pilot to recognize a sideslip 
misalinement, t o  zero  sideslip, and to maintain  control of the  a-irplane 
during  the  dynamic  pressure  buildup.  Successful  entry could be-accom- 
plished wlth either  of the control  systems, As dynmaic  pressure 
increased,  it  became  necessary t o  control  the  sideslig  precisely  to 
prevent  large  excursions in roll. The  velocity c d  system minhized 
this  task;  wbereas, with the  acceleration  system  the task was nore dif- 
ficult.  Roll  excursions of considerable  magnitude  were  evident  espe- 
cially in the higher aynamic  pressure range. It should be noted, however, 
that  in  this dynamic pressure  range  the  aeroaynamic  controls wouldbe of 
increasing  itqportmce.  With  the  attitude.  conmand system, entry was 
accomplished  without  pilot  control. 

CONCLUDING REMARKS 

A simulator  study of reaction  controls has showp that: 

A velocity  or  attLtude  commagd  reaction  control  system would facil- 
itate  the  task of orientation  and  stabilization  in  regions  of low dynamic 
- aressure. 

A l l  the  systems  were  insensitive to l a g s  that might be encountered 
i n  practical  rocket  systems,  but at large l ags  the  effectiveness of the 
proportional  acceleration  system  deteriorates  much  more  rapidly than 
does  the  effectiveness  of  the  other  control  systems. 

Dynamic  pressure  conglicates  the  stabilization  and  orientation 
problem by aerodymaically coupling yaw and roll,  but  this  complication 
only  serves  to  emphasize the superiority  of the velocity and attitude 
cormand  systems  over  the  acceleration  system. 
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The at t i tude command syskm was superior t o  the velocity command 
system as a stabil izing device, but the velocity command system was 
preferred f o r  orientation. 

High-speed Flight Station, 
National Advisory Committee for Aeronautics, 

Edwards, C a l i f . ,  April 14, 1958. 
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Physical  characteristics: 
Wing mea, sq f t  . . . . . . . . . . . . . . . . . . . . . .  
WingChOrd,ft.  . - - . 
Wingspan,ft  . . . . . . . . . . . . . . . . . . . . . . .  
Airplane mass, slugs . . . . . . . . . . . . . . . . . . . .  

Maments of inertia: 
About X-axis . slug-ft2 . . . . . . . . . . . . . . . . . . .  
About Y-&s, slug-& . . . . . . . . . . . . . . . . . . .  
About z-axis, slug-ft2 . . . . . . . . . . . . . . . . . . .  

Aerodynamic cheracteristics: 
Damping-tn-roll derivative, CzF . . . . . . . . . . . . . .  
Rolling moment due t o  yawing velocity 

cross  derivative, Czr . . . . . . . . . . . . . . . . . .  
EZfective dihedral derivative, C z p  . . . . . . . . . . . . .  
Damping-in-yaw derivative, C& . . . . . . . . . . . . . . .  
Yadng moment due t o  rolling velocity 

Directional  stability  derivative, C, 
Pitch-damping derivative, % + %  . . . . . . . . . . . .  
Longitudinal stability derivative, Cmc, . . . . . . . . . . .  
Let-curve slope, C& . . . . . . . . . . . . . . . . . . .  

cross  derlvative, C% . . . . . . . . . . . . . . . . . .  
B . . . . . . . . . . .  

Lateral-force  derivative, Cy . . . . . . . . . . . . . . .  B 

200 
10.2 
22.4 
420 

-0.16 

0.01 
-0 .086 

-0 91 

-0.1 
0.17 
-4.5 
-0.30 
1.6 

-0.86 
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PERTINENT CONTROL REGIONS 

Figure 1 

. 

Figure 2 
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CONTROL EFFECTIVENESS REGIONS STUDIED 
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CONTROL 
EFFECTIVENESS 

RATIO, 

sAnsFAcToFwI ON-OFF 
PCCELERATION COMMAND 

ROLL CONTFlOL EFFECTIVENESS. DEG/SEC/SEC 

Figure 3 
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Figure 4 



10 

FUEL REQUIREMENTS FOR 30° ATTITUDE 
IDEAL SYSTEMS, q =  0 

&CELERA.TWN ar*1IW 

ATTITUDE 
"""" "" - VELOCITY CO)IMND 
""" 

REQUIRU), 
FUEL 

L6 

2 -  

NACA RM ~ 5 8 ~ 2 2  

CHANGE 
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PILOT CONTROL PROBLEM 
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Figure 6 
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Figure 8 
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